Spectral methods using Legendre wavelets for nonlinear Klein∖Sine-Gordon equations
نویسندگان
چکیده
منابع مشابه
Spectral methods using Legendre wavelets for nonlinear Klein\Sine-Gordon equations
Klein/Sine-Gordon equations are very important in that they can accurately model many essential physical phenomena. In this paper, we propose a new spectral method using Legendre wavelets as basis for numerical solution of Klein\Sine-Gordon Equations. Due to the good properties of wavelets basis, the proposed method can obtain good spatial and spectral resolution. Moreover, the presented method...
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملLegendre Wavelets for Solving Fractional Differential Equations
In this paper, we develop a framework to obtain approximate numerical solutions to ordinary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are utilized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the technique.
متن کاملLegendre spectral projection methods for Urysohn integral equations
In this paper, we consider the Legendre spectral Galerkin and Legendre spectral collocation methods to approximate the solution of Urysohn integral equation. We prove that the approximated solutions of the Legendre Galerkin and Legendre collocation methods converge to the exact solution with the same orders, O(n−r) in L2-norm and O(n 1 2 −r) in infinity norm, and the iterated Legendre Galerkin ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2015
ISSN: 0377-0427
DOI: 10.1016/j.cam.2014.07.014